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The problem of the dynamics of a system of charged particles in a constant magnetic field is transformed
into one from which the constant field gauge has been removed. The Liouville equation assumes a different
form in this formalism. A variational principle for generating approximate solutions to complex problems

is presented.

I. INTRODUCTION

HE subject of this discussion is the theory of a
plasma of identical charged interacting particles
in the presence of a magnetic field. While some of our
results apply to this system without further specializa-
tion, nonetheless, we shall gradually reduce the scope to
consider transport phenomena in a degenerate electron
gas. Our principal effort is a demonstration of a general
procedure for generating equations of transport of
various quantities in the presence of magnetic fields.

The customary approach to this problem is via the
Boltzmann equation!? or a related form; the states of
the particles of the plasma are described by wave
packets. The magnetic field is taken into account by the
use of the Lorentz force acting on the packet.

We shall criticize and circumvent two aspects of this
procedure. First, its treatment of particle motion is
essentially classical in that the packets are spatially
localized, and so too are the forces acting upon them.
This localization restricts the Boltzmann equation
approach to the description of long-wavelength phe-
nomena. Our final transport equations will contain
correction terms for shorter wavelengths. Second, the
construction of packets, each considered by itself, makes
a collection of one-particle problems out of a single
many-body system. The use of the Lorentz force on each
packet actually means that one is using a different
gauge for each particle of the plasma. This is a more
serious difficulty than the first, for it leads to transport
equations which are actually different at all wave-
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lengths from those derived from the fully quantum-
mechanical gauge-independent theory we develop here.

Our argument in this paper is devoted to the total
elimination of reference to gauge in the equations of
motion of physically meaningful quantities. Our final
formalism will thus achieve gauge invariance by being
gauge independent.

In this paper we shall develop a gauge-independent
modified form of the Liouville equation appropriate to
many-body systems. We shall show how the solutions
of this equation may be used to find values for physical
quantities such as particle density, current, current
density, spin density, etc. Finally, we shall show how
solutions of our modified equation may be obtained
variationally and thus give a means for generating
approximate solutions for many-body interacting
systems.

We wish to emphasize that the construction of the
formalism is carried out without approximation. The
applications we shall subsequently display are approxi-
mate, and we shall identify and discuss the approxima-
tions as they are made, but there are no fundamental
limitations on our basic equations.

In Sec. II we develop the gauge-independent density
matrix. To remove reference to gauge, we follow a
procedure given by Thomas? for single particles. We
extend his method to many-body interacting systems.

In Sec. IIT we show how the expectations of various
operators referring to physical quantities may be ob-
tained, as well as a transformed Liouville equation.
Again, the results are cast in gauge-independent form.
Gauge independence is explicitly demonstrated.

In Sec. IV, we develop a variational principle useful

3R. B. Thomas, Jr., Phys. Rev. 171, 827 (1968).
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for obtaining approximate solutions of the modified
Liouville equation. The principle is structurally similar
to Frenkel’s* variational principle on the Schrodinger
equation used and discussed elsewhere.>¢ The use which
we make of this principle in the following paper is the
equivalent of the time-dependent Hartree-Fock
approximation.®~7

II. TRANSFORMATION OF DENSITY MATRIX

Measurable values for physical quantities are ob-
tained by evaluating the trace of the product of the
appropriate operators with the statistical density
operator or density matrix,

(0)= (TrOp)(Trp)~*. ¢y

The density matrix p satisfies the Liouville equation,

dp
ih— =[H,p]. 2)
at

In this, H is the Hamiltonian operator for the complete
system:

N e 21
H= Z {l:-—ihv,-— -—A(I'i)] — +U(r,-,u,-)
i=1 c 2m

HEVED) . ©

The sums run over all the particles of the system. A(r;)
is the vector potential at the point r;.

The Hamiltonian contains explicit reference to the
vector potential and is hence gauge dependent. All wave
functions, must have a complementary gauge depen-
dence so that the values of physical quantities, various
matrix elements and their sums which the theory leads
us to construct, shall be gauge invariant. Equations (1)
and (2) then imply that p is gauge dependent. If we
were to change the gauge in the Hamiltonian, (3),
without making a corresponding transformation on p,
the values of “physical” quantities calculated from (1)
would be changed. It is thus important that the gauge
used in H and p be consistent.

It is possible to obtain exact solutions of (2) and (3)
for neninteracting systems, the well-known Landau
states.® But it is our intention here to make contact
eventually with the semiclassical Boltzmann-like theory
of transport as given by Silin.! For this purpose the use
of the exact solutions is awkward.

Localized wave packets describing the motion of
single particles may be constructed and used to obtain

¢ J. Frenkel, Wave Mechanics, Advanced General Theory (Claren-
don Press, Oxford, England, 1934), p. 253.
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(126L4.)i,. Van Zandt, Phys. Rev. 172, 372 (1968).

7L. L. Van Zandt, Phys. Rev. 162, 399 (1967).

8 For example, C. Kittel, Quantum Theory of Solids (John
Wiley & Sons, Inc., New York, 1963), p. 218ff.

L. L. VAN ZANDT 1

a Boltzmann equation.? In attempting to apply the
procedure suggested in Ref. 2 to our many-particle
systems, however, we immediately encounter the
difficulty of having to use a different gauge for every
particle. We proceed instead by transforming to a
formalism from which the vector potential has been
eliminated. This transformation, applied to Egs. (1)
and (2) leaves them explicitly dependent on B but
not A.

The existence of a useful gauge-independent for-
malism is suggested by the work of Thomas.? For a one-
particle gas, he finds a gauge-independent expression
for the particle current. We broaden the system to many
particles and the class of operators from just the current
to include tensor densities of many kinds.

The density matrix p is a function of all the p;, 15, o,
B, and . Gauge invariance of all measurable quantities
imposes the requirement that p; and A(r;) shall appear
only in the combination p;—(e/c) A(r;). We may, there-
fore, express p as a Fourier integral,

N e
p=/ expl:l Z (ps_ "As>' Es]
8=1 Cc
XR(&- - &v,11- - Iy, B, 0)d&- - -dEv, (4)
in which A, means A(r,). In the symmetric gauge,
A@M)=3B(xy—y%). ©)

In this gauge, ps- & and A,- & commute. The integrand
can then be written as

expL—i T (¢/0) A £ explli = por- 0 IR

w [—i(e/c)As- & ™
5 [Zie/oA &1

-1

s=1 | ns=0 ns!

X{expli £ po- ENR}. (6)

Now the factors of (&;),, appearing in the first terms in
braces can be replaced by —i9/9(ps)s,y Operating on the
second term. This derivative can in turn be expressed
as a commutator of the second term with (r;),,,. By this
sequence of operations, the terms in A, can be removed
from under the integrations over &, and p expressed as
an N-fold series of commutators of r, and 5, where

N
p= / exp(X ipe E)RdEr -l ™

p=ﬁ fTI i i (ieBxs/2hc)"s (—ieBys:/th)"S"
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Eexp[— ENZ fAsu(gl%)w]ﬁs Us. (8)

In this expression,
[e™ p]=[a,[a,...(n times),b]]- - - (n times)]

and

Lal,b]=b. 9)

The %, and y, all commute so that the successive com-
mutations in (8) could be performed in any order.
Now we assume that p (and thereby 5) vanishes at
infinite r or infinite p faster than any power of r or p.
Then Tr[x*5]=0; from Eq. (8) we then obtain
Trpo="Trp, (10)
for only the term in the sums with
M=y =MNo="Mgr ="+ :0

contributes. Thus, if p is normalized the transformation
of Eq. (8) conserves this normalization.

III. EQUATIONS OF MOTION

Let us now consider the operator product Oop. Clearly,
if Oo does not involve any of the p; we have

Oo[x!™,5]=[x",005]. (11)

Hence we can convert Ogp to the transformation in (8)
acting on Ogp. In particular

TrOpp=TrO4p. (12)

Now consider Oy, proportional to mv.,=[ps—(e/c)As .
and functions of r,,r,

O1=mvs,f(T). (13)

Then we form
O1p=[ps—(¢/c) A, 1o fUp=[ps—(¢/c) A 1.Ufp

and by manipulation of commutators” of the form
[ps2,%™] obtain

€ eB eB
Olp =/ eXP( -1 Z —As’ * Es’)(?sz"‘ —y_"h_gsy)
c 2¢ 2c

Xexp[i 2 ps- & JR(E)dE.

Again we convert factors of i€, into (9/dp.) ., as in the
construction of 5 and U in Eq. (8). However, if i£,, in
the first exponent is replaced by /8., this differentia-
tion will act not only on exp[7Y_ p,- & | but also on the
intermediate factor of p,.. Correcting for this additional
differentiation introduces a factor — (eB/2c¢)y, cancelling
the term in y already present and giving finally g

O1p= ﬁélﬁ s

(14)

(15)
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where

_ eB i)
01=[ﬁn+i——h<——) ]f. (16)
2¢ \0psy/ op
A similar process converts mv,,p into U[ ps,—i(eB/2c)%
X (8/3psz)op]fs. Clearly, successive factors of mwv,
and mv, may be commuted with ¥ seriatim. Equation
(15) is then a general result, and O is obtained from O
by replacing
eB eB 9
Pot—y=po+—ih—
2¢ 2¢c dpy

eB d
pz—l— —ih(—4>
2c \opy/ op

and making the corresponding changes for mv,.

Note that 2, and v, do not commute. The value of
their commutator is preserved under the transformation
to 9, and 7.

The procedure we have followed depends only on the
properties of {7 and could, in fact, be carried out without
reference to &.

Let us now consider the form p0O. Clearly

p0o=U(300) (17

where the commutators in U [cf. Eq. (8)] now include
0o. One may perform a series of steps as led to (15) to
obtain a corresponding relation for pO. However, a
general expression is not needed, since (15) is adequate
for finding expectations. We do need to transform
[H,0] to obtain an equation of motion for 5. In light
of (17), this means we need to find X, [ (mv,2),0].

This commutator is conveniently found by expanding
exp[—1 Y (¢/c)A,- %] as in (6) and (8), and rewriting
factors of & in terms of (9/8ps)op. The manipulations
are straightforward but lengthy. One obtains

with

(]~ ﬁ{ = [zip,,]

s m
eB
2 i DyniJber
2mc
—p wtxs’ﬁ] - [xs,ﬁjﬁ 81/)
+[U(rs,us>+% > V(rs,ra'),ﬁ]} . ()
s’ #s

Equation (8) may be differentiated by time. Combining
the result with (18) gives

dp
{ih~ —[H,p]} -0
ot
- ﬁ{[ﬁ,pmwc S (pelyniTH+ Do Ipee

dp
— pay[ Xsyp ] — [ X0 |Psy) — zh;;} , (19)
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in which

H=Y"

2 .
Lall FU@o00)+5 2 V(rs,rs:)} . (20)
s \2m s'%s
Since U operating on functions which vanish exponen-
tially at infinite r and p is nonsingular, the expression
inside the braces in (19) is the desired equation of
motion of p.

Let O1 be some operator of physical interest. We take
the trace of Eq. (15). But since Tr(d/9ps).,"015=0,
we have only

(21)

Thus in place of (1) we have (21) and in place of (2)
we have

TrO1p=Tr04p.

.9 _ e
ih— =[H,p]— —— 2 {psXB-[r,,5]
ot 2me s
+[rs7ﬁ]'p3><B} .

To carry out the manipulations above, we have made
a gauge choice described in Eq. (5). It is of some interest
to see where the gauge dependence of p has gone and to
generalize somewhat our original gauge choice.

Any vector potential of the form

(22)

A= B(axy —asyX) (23)
represents an acceptable gauge as long as a;+as=1.
Our particular gauge choice was made so that
[p-£A-£]=0. In the more general gauge of (23),

[p ‘LA E]Z 1hEE,B(as—ay). (24)
We then have
ei[p*(e/c)A] E— e—i(e/c)A~Ee—*hzzéyeB(az—al)IZceip-E . (25)
We convert 7€ to (9/0p)., as before and obtain
eB a a
wfZl) )]
4 9py/ op 9P/ op
i) a
-Hh%(az—m)(*—) (—-) ]»e"!"E
0P/ 0p \OPy/ op
=U(asas)e . (26)

Now we construct, for example,
mvap=mo,U(a1,a2)p= [ pot-(eB/c)ary]U(aran)p. (27)

The term (eB/c)azy commutes with U(as,a2). Moving
P< through the first factor in (27) adds a correction term

eB 9
“ain(.-) (28)
¢ 9py/ op
and from the second factor we get another term
(—eB/c)asy (29)
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and from the third factor, we get a term

eB d
—"Lh'lz' (az - dl) <———'> .
c 0py/ op

Y

(30)
Thus, altogether, we have

eB N
(PH‘ —023’> Ulas,az)
C

”;eB(aﬂLaz)(i) ] . (31)

4 Py/ op

= [7(01,02)[Pz+

But since a;+a2=1, we regain the expression (16), in-
dependent of the gauge. Higher powers of v, as well
as v, are handled similarly. Our use of Egs. (21) and (22)
instead of (1) and (2) thus achieves the total elimination
of the gauge from the formalism. All gauge effects are
incorporated into the operator U which effects the
transformation.

These equations must be used with extreme care,
however, for the transformation (8) has some very
strange properties. In particular, we know that p must
have only positive eigenvalues. This requirement leads
to negative as well as positive eigenvalues for 5. Also, if
we treat a single system, rather than an ensemble, i.e.,
a “pure” state, then p?=p. This property is also de-
stroyed by the nonsimilarity transformation (8). We
elaborate on these oddities in the following paper where
solutions of (19) are exhibited appropriate to more
specific circumstances.

IV. VARIATIONAL PRINCIPLE

The equation of motion for p is in an unusual form.
While still bearing a resemblance to the Liouville
equation in some terms, it contains additional terms.
It cannot necessarily be cast into the form of an ordinary
Liouville equation for 5 with an effective Hamiltonian.

We mean for the formalism developed here to be of
quite general utility, however. Hence, we wish to display
a general method for solving dynamical problems cast
in this form. In fact, in the next paper, we succeed in
rephrasing our specific problem in the form of the
ordinary Liouville equation by means of a time-
dependent transformation. For cases in which such
transformations are not available or of excessive com-
plexity, we present the following general procedure.

Our goal is the solution of the operator equation (22),
but since part of H is the interaction operator
23 i V(r;—r;) an exact solution is clearly out of the
question. At some initial instant, however, we may
choose p—or p—arbitrarily without loss of generality
(requiring that g*=p). This corresponds to the freedom
to prepare an ensemble in any initial state. From this
initial state we have thus to determine the state at later
times in accord with the Schrédinger equation, or
equivalently, from the initial p(0), to find subsequent
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p(?) from the Liouville equation, or again equivalently,
from a starting (0), to find subsequent 5(f) from
Eq. (22).

We have elsewhere® discussed the solving of the
Schrédinger equation by a variational approximation
due to Frenkel. We show here how an analogous
procedure can lead to approximate solutions of (2)
or (22).

At some starting instant, =0, let p=p(0). A time
At later,

dp
p=p(0)+—A¢
at

1
=p(0)+ %[H AL, (32)
from Eq. (2).

Now we are free to choose a simple expression for
0(0), but in general, [H,p] will still be of uncomputable
complexity. We must, therefore, approximate dp/9t = .
This function = will depend on v; and r; in general, and
may also contain adjustable parameters b, We con-
struct for % as general a function as we can, consistent
with carrying out the operations we shall have to per-
form on it. The b; are then chosen to make & the “best”
approximation to dp/d¢ out of the set of functions de-
termined by the ranges of the b;; the b; are determined
variationally.

Consider the difference (dp/9t—E). Clearly,

(G-

The expectation signs in (33) are meant to refer to any
diagonal element of the operator. Let

(33)

2

>0.

0

I=Tr|——E (34)
at

The equality sign holds only where dp/dt and E are
strictly equal [consider the representation in which
(8p/dt) —E is diagonal].

We minimize / with respect to the b; to obtain the
best approximate . Thus

ol dp 0BT 6E/dpt
L)
0b; at 6b; ob; \ Ot

0T /dp
=—2Re Tr——<—— —E)
0b; \0t

=0. (35)
Now p must be Hermitian to describe a physical state.
Then dp/dt is likewise Hermitian. If our approximate
dp/dt is not, we can make it so by forming 3(E'+ %) and
proceeding; we will lose no generality in this. Then 6%
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will also be Hermitian, and since the b; can always be
taken as real, any imaginary part of (35) will have no
physical content. In particular, we could set the com-
plete expression
0Et /dp
Tr (—— —E) =0.
6b; \0!

(36)

Frequently (36) is useful even when care is not taken to
make 8% Hermitian. The imaginary part of (36) is
trivially satisfied. Usually a combination of 6/6b; and
8/6b7* can be chosen to make 8% Hermitian. Since half
of the resulting equations are trivial, the use of (36)
instead of (35) only introduces redundant expressions.
This could be anticipated; Eq. (34) contains all the
physics of Eq. (32), which latter equation yields a
complete dynamics. The apparent ambiguity of (35)
hides no new physics.

Equations (35) and (36) relate simply to the Frenkel
variational principle* on the wave functions. Let us
define a new operator 8 by

E=[0,0]. 37
Since dp/di= (i#)"[H 0], Eq. (36) can be written
oxt
Tr—b—([H —ih,p])=0. 38)
Let us write p in terms of some basis vectors |e;):
p=|edpiilei] . 39)
Now,
dp 0 d
— =2 {—l\fz‘)mj(éfl + [ epi—esl (40)
at i Lot ot

Now dp/ 9t is expressed in terms of 9|e;)/dt and thus &,
the approximate dp/df, may be expressed in terms of
approximate d|e;)/d¢ which we shall call |6;):

E=3 {{0:)pieil +] epiil0i] } - (41)

The operator 8 of Eq. (37) therefore replaces |¢;) with
an approximation to 9|e;)/d!. Taking variations,

SE=2 {(8]0:)pii{ei| + | en)pia (05} - (42)

By rearranging operators under the Tr we can now write
(38) as

lZ pitf (01 } (H —i%6) | €m)om;
+3° (e {810} parer| (H— i) | €m)pm;
+3 piler| H—i40{5|0:)} pmi

i 2 | H—ih8] e)pimlen| {60:)}p;;=0.  (43)
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Choosing a set of |e;) which diagonalize p, we obtain
§ P80, } (H | &) —ih6;))
+2 p”((e] H+i(0;]){5]0)} =0. (44)
J

If we further specialize p to describe a pure state (p?=p),
we obtain

Re / 5% (Hyy—ihf)do =0, (45)

which is Frenkel’s variational equation.

Thus as long as we work with the Liouville equation,
application of either Frenkel’s principle or Eq. (35) will
produce the same results. In the modified formalism
of Sec. II, however, dp/d¢ is not expressed as a com-
mutator, [5,H ], but includes additional terms which
are not manifestly of the form [5,H"].

Our demonstration of the equivalence of the two
variational principles depends on the expression of
dp/ 0t as (1/i#)[H,p], a simple commutator. We there-
fore relinquish Frenkel’s simpler form in favor of the
more generally applicable Egs. (35) or (36).

To make (35) or (36) useful, we assume a form for an
approximate p in which the time appears explicitly. At
some starting instant, ¢=0, the true density matrix may
be taken as p(0) without loss of generality. We calculate
dp/ 3t on the basis of our assumed time dependence and
use this for E. Also for the true, or exact dp/dt as it
appears in (35) we can use Eq. (2) or Eq. (22). Thus

we have
6 fAp\T 1 dp
oG Jemer =5
0b;\ot i 0t

using Eq. (2) for simplicity, or

aEOIEE

(4 aﬁ
-2 {PsXB-[rs,ﬁ]‘f‘[rs,ﬁ]'PsXB}—ih—]:o,
2mc P
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We make p or 5 as general as we can consistent with
solving the variational Eq. (35) or (36). It should finally
be pointed out that Eq. (35) or (36) may also be useful
as a variational approach to thermodynamic problems.

V. CONCLUSIONS

We have developed a formal structure for the study
of the dynamics of a plasma in a magnetic field. Begin-
ning with the Liouville equation, we have transformed
the basic equations into forms from which the am-
biguities of various gauges have been entirely removed.
We have shown how Thomas’s transformation can be
extended to systems of arbitrary numbers of interacting
particles. Also, we have given the forms of expectations
of all operators describing gauge invariant, physically
meaningful quantities. We have thus given the pre-
scriptions for a complete many-body dynamics in
gauge-independent form.

We have furthermore shown how approximate solu-
tions of the operator equations of motion may be
generated variationally. We shall use this method in
the second paper of this series to obtain what is essen-
tially the time dependent Hartree-Fock approximation.

We have not yet shown why the gauge-independent
formalism is advantageous to use as compared to the
ordinary Liouville equation. This is best shown, how-
ever, by application of the formalism to the construction
of transport equations. In fact, the formalism is ideally
suited to this problem; it describes plasma dynamics in
just the right way for making contact with the semi-
classical, Boltzmann equation approach to transport.

It should finally be mentioned that although we have
developed the formalism for systems of identical
particles, the extension to plasmas of arbitrary constitu-
tion is trivial. The manipulations here presented are,
in fact, only a reformulation of the Schrodinger equa-
tion. This reformulation has been carried out without
approximation and preserves the full generality of the
original gauge-dependent form.



